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A robust numerical method for the localization of caustics is proposed for general
Hamiltonians. It is based on the direct resolution of a system of partial differential
equations obtained through a local change of the time variable in the Hamilton–
Jacobi equation and complemented by a set of transport equations. Numerical results
(1- to 3-D) are presented. c© 2000 Academic Press
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1. INTRODUCTION

Caustics are commonly observed as an optical phenomenon and the easiest and intuitive
definition of such an object relies on light rays: a caustic is the envelope of a family of
rays. It is also a place where rays concentrate and the pattern of a caustic can easily be
distinguished as light intensity increases dramatically there (“kaustikos” means burning
in ancient Greek). This phenomena occurs when rays are bent either by diffraction or by
variation of the optical properties of the medium, or simply when the source of the light is
such that the rays focus (remember the parabolic mirrors of Archimedes that set the Roman
war fleet on fire using the rays of the sun).

Of course the actual perception we have of this phenomenon is not really of rays (no one
has ever observed a single light ray). It would be more accurate to speak of a continuum or
a field of rays. Rays are simply a convenient and natural way of modeling and understand-
ing the underlying phenomena. In this paper, numerical methods based on rays are called
Lagrangian because of the analogy between rays and particle trajectories in fluid mechan-
ics: various physical quantities are computed but only along characteristic curves which
themselves depend on the physics. In this framework, determining caustics on rays is easy.
The main drawback of the Lagrangian method is the difficulty of maintaining a uniform res-
olution in space when increasing the number of computed rays. Caustic curves and surfaces
(in 3-D) are then represented by collections of possibly sparse points belonging to different
rays. The continuous vision we have of this optical phenomenon is therefore difficult to
achieve numerically in the Lagrangian framework (a possible fix is to use sophisticated
representation/interpolation techniques as in [16, 26]).
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An alternate modeling possibility, in some sense closer to our visual perception, is to use
functions defined on the continuous medium and which also describe the propagation of
light. They are generally called phase (or travel-time or eikonal) and amplitude (or intensity)
and they solve two partial differential equations, respectively a Hamilton–Jacobi equation
and a transport equation. Numerical methods based on this approach are called Eulerian:
the discretization of the support of the solution is fixed a priori and in particular does
not depend on the rays. The space resolution of the numerical method is therefore easily
maintained and the accuracy of the approximation depends on this resolution. One issue
of geometrical optics is to formalize the relationship between rays, phase, and amplitude.
In particular, this theory predicts an infinite amplitude at caustics or equivalently the local
dilatation rate of the field of rays is 0. The present piece of work shows that it is possible,
but not straightforward, to determine caustics in the Eulerian framework.

It is well known that Lagrangian solutions, which are the bicharacteristics of a given
Hamiltonian system, match the Eulerian solutions of the corresponding Hamilton–Jacobi
equation as long as they are “classical” [14, 27]. This means that rays are not allowed to
cross or equivalently that the phase transported by the rays remains an Eulerian function of
space: it is single valued and defined everywhere. This assumption is right at the heart of
the problem and we can identify two distinct sources of trouble.

First, while the Lagrangian method naturally sweeps several times the same space location
producing a multi-valued solution, the Eulerian method only computes a single-valued
solution. It is known that in multi-valued regions, the so-called viscosity solution (the
output of stable upwind schemes) only yields the minimum phase pointwise [5, 25]. Quite
a number of attempts at producing Eulerian or mixed Eulerian/Lagrangian methods of
solving the multi-valued problem can be found in [1, 4, 8, 11, 12, 18, 22].

The second issue is the problem of determining caustics as free boundaries for the Eulerian
approach. The caustic location indeed depends on the solution, which is only defined on
one side of the caustic envelope.

In [5], where a generic algorithm for the splitting of the multi-valued solution into several
single-valued Eulerian solutions is presented, a heuristic method is proposed to locate caus-
tics. This work is probably the first to address this problem, as caustics are generically never
associated with the minimum phase and cannot be observed in plain viscosity solutions.

In this paper, we focus on caustic capturing and we explain how the two fundamental
difficulties mentioned above combine to make the problem of Eulerian caustic capturing
difficult. Then we propose a robust algorithm to do this.

Section 2 recalls the bases of Lagrangian and Eulerian approach. Section 3 discusses
the different problems we face when using Eulerian methods. Section 4 presents the
Eulerian caustic capturing algorithm. Section 2 to 4 are written for a general Hamiltonian
and illustrated by one-dimensional numerical simulations. Section 5 presents 2-D and 3-D
numerical caustic capturing for a problem modeling laser beam propagation in a plasma.

2. BASIC TOOLS

2.1. The Lagrangian Method

A Hamiltonian functionH(t, y, p) is given, defined onR+t ×Rd
y×Rd

p; d is the space
dimension of the problem,R+t ×Rd

y is the time–space configuration, in which rays can
evolve, andRd

y×Rd
p is called the phase space. The Hamiltonian is assumed to be continuous

up to its second derivatives and convex and coercive in its last variablep.
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The Lagrangian method then consists in solving the Hamilton system formed by the
following set of ordinary differential equations (ODEs) [2, 27]:

ẏ(s, x0) = Hp(s, y(s, x0), p(s, x0)), y(0, x0) = x0,

ṗ(s, x0) = −Hy(s, y(s, x0), p(s, x0)), p(0, x0) = φ0
x0(x0),

(1)
ϕ̇(s, x0) = p(s, x0) · Hp(s, y(s, x0), p(s, x0))− . . .

H(s, y(s, x0), p(s, x0)), ϕ(0, x0) = φ0(x0).

The dot stands for time differentiation(··) = d(.)
ds ; gxi (x1, x2) andgxi xj (x1, x2) respectively

denote the gradient and the Hessian ofg with respect toxi , and(xi , xj ), φ
0 is the initial

phase and also appears in the initial condition forp. For eachx0 ∈ Rd
y (or a subset ofRd

y),
the system generates “bicharacteristics strips”(y(s, x0), p(s, x0)) lying in phase space with
smooth dependence ons andx0. The projections of the strips ontoRy: y(s, x0), are called
the rays. Each ray is therefore “labeled” by its initial positionx0. The phaseϕ(s, x0) is
transported by the corresponding rayy(s, x0) and, when rays are crossing, is a multi-valued
function of the configuration spaceR+t × Rd

y.
It happens in particular at caustics which are the points on the rays where an infinitesimal

tube of neighboring rays collapses. Mathematically, a rayy(s, x0) encounters a caustic point
when the determinant (denoted|.|) of the Jacobian matrix ofy with respect tox0,

α(s, x0) =
∣∣∣∣∂y(s, x0)

∂x0

∣∣∣∣, (2)

is zero. The quantityα is sometimes called “geometrical spreading” as it provides a local
measure of the geometrical convergence or divergence of the rays.

The Lagrangian method therefore needs to evaluateα(s, x0) along the rays to locate
caustic points. The computation of∂y(s, x0)/∂x0 is performed using a set of additional
ODEs obtained via a linearization of the system (1) with respect tox0,

 ∂̇y
∂x0 (s, x0)

∂̇ p
∂x0 (s, x0)

 = A(s, y(s, x0), p(s, x0)) ·
 ∂y

∂x0 (s, x0)

∂p
∂x0 (s, x0)

,
( ∂y

∂x0 (0, x0)

∂p
∂x0 (0, x0)

)
=
(

I dd×d

∂2φ0

∂x02 (x0)

)
,

(3)

where

A(t, y, p) =
(

Hpy(s, y, p) Hpp(s, y, p)

−Hyy(s, y, p) −Hyp(s, y, p)

)
. (4)

This is a set of 2d2 ODEs but as it is written each unknown of system (3) is ad× d matrix
and the matrix vector product must be understood in the correct algebra.

Lagrangian caustic localization therefore consists in solving (1)–(3) and evaluating
α(s, x0) along a ray using (2). When it vanishes or more precisely changes its sign, the
ray has passed a caustic point.
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2.2. Eulerian Viscosity Solutions

The Eulerian method is based on the alternate formulation of the problem as a Hamilton–
Jacobi equation

∂φ

∂t
(t, x)+ H(t, x, φx(t, x)) = 0, for (t, x) ∈ R+t × Rd

y
(5)

φ(0, x) = φ0(x), for x ∈ Rd
y.

When the solution is classical, typicallyφ0 is C1 andα does not vanish, a classical result
of the calculus of variations [14, 27] proves that the Eulerian phaseφ(t, x) evaluated at the
Lagrangian coordinates specified by the rays matches the Lagrangian phase and its gradient
the p components of the bicharacteristics:

φ(s, y(s, x0)) = ϕ(s, x0)
(6)

φx(s, y(s, x0)) = p(s, x0).

We will come back to this correspondence and prove it as a particular case of our new
Eulerian formulation in Section 4.3.

When the conditions for a classical solution are not satisfied, there is still a notion of
global weak solution for Eq. (5), called “viscosity solution” [3, 9]. Viscosity solutions are
the correct object to consider here because any “reasonable” numerical scheme converges
to this class of solution [10, 21]. These schemes are generally called upwind because they
discretize space derivatives on the side opposite to the direction of the rays (should the rays
be traced).

A link can still be made between Lagrangian and Eulerian solutions using the theory of
optimal control (see [5]). The viscosity solution can be characterized as the value function
of the optimization problem

φ(t, x) = inf
{x0∈Ry,y(.)∈W1,+∞(R):

y(0)=x0,y(t)=x}

∫ t

0
L(s, y(s), ẏ(s)) ds+ φ0(x0), (7)

where the minimization is performed with respect to the admissible curvesy(.) and their
initial point x0. The Lagrangian functionL(t, x, v) = supp∈Rp

{p · v − H(t, x, p)} is the
Legendre transform ofH with respect top.

When only one ray matches the end point condition and it has no caustic point, the
solution is “classical” and the value function of problem (7) is exactly the integral of the
phase ODE in (1).

If more than one ray (still with no caustic points) reaches the time–space point(t, x) and
if we denote as(x0

k)k=1..n then initial points of these curves, the viscosity solutionφ selects
the absolute minimum of the associated phases:

φ(t, x) = min
k=1..n

ϕ
(
t, x0

k

)
. (8)

If no ray reaches this point, the viscosity solution implicitly generates “non-classical”
rays to fill this empty space. This means that the optimal curves will satisfy the Hamiltonian
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system (1) with different initial conditions on thepcomponent. We discuss this phenomenon
in the next section, as well as the behavior of the viscosity solution in the presence of caustics.

When the configuration space is bounded, the optimal curves may only satisfy the ray
equations (1) piecewise (they can be reflected or diffracted) or they may creep along bound-
aries. This will not be the case in this paper (see [15] for an investigation of this question).

Of course (5) alone only provides information on the phase. As in the Lagrangian method,
we will need additional equations to determine caustics. We therefore introduce a new Eu-
lerian vector-valued variableδ(t, x) configured in time–space(t, x)∈R+t ×Rd

y and defined
by (·T is the transpose of·)

δ(s, y(s, x0)) =
(
∂y(s, x0)

∂x0
,
∂p(s, x0)

∂x0

)T

. (9)

As for the Hamilton–Jacobi equation (see Section 4.3), each component ofδ(t, x), δi (t, x)
can be shown to satisfy the transport equation

∂δi
∂t (t, x)+ Hp(t, x, φx) · δi,x(t, x) = A(t, x, φx(x)) · δi (t, x), i = 1, 2

δ(0, x) =
(

1Rd , ∂
2φ0

∂x02 (x0)
)T
, for x ∈ Rd.

(10)

As in (3) the unknownsδi are d × d matrix and we here have matrix equations where
the differential operators must be applied componentwise and the· indicates the proper
inner multiplication. The solution of this system, when coupled to (5), gives the necessary
information to compute a Eulerian counterpart forα denotedβ(t, x):

β(s, y(s, x0)) = α(s, x0). (11)

Finally β can simply be expressed only in terms of Eulerian variables (using (2) (9)):

β(t, x) = |δ1(t, x)| (12)

Alternate methods for the computation ofβ can be found in [7, 13, 23].
The Eulerian method should therefore be able to determine caustic points usingβ. The

situation is however not so simple because the restrictions imposed by the properties of
the viscosity solution (i.e., (7) and (8)) do not allow direct access to these points. This is
the subject of the next section and the Eulerian way to caustics is presented in Section 4.

3. EULERIAN PATHOLOGIES

These phenomena are generically linked to the occurrences of caustics. In 2-D (including
the time dimension), fold or cuspidal caustics are generic for general Hamilton–Jacobi
equations. We refer to [5] and the references therein for more on this topic. In higher
dimension there may be additional type of caustics but the pathologies discussed in this
section are general.

We concentrate on a particular Hamiltonian for a problem in 1-D space dimension arising
from 2-D geometric optics (see [25, 5])

H(t, x, p) = −
√

n2(t, x)− p2, (t, x, p) ∈ R+t × Ry × Rp, (13)

wheren(t, x) is a positive smooth index of refraction.
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FIG. 1. Rays forn≡ 1.5, φ0(x) = −
√

1+ 16∗ (x− 0.5)2

2
. Precaustic part: solid line. Postcaustic part: dashed line.

Caustic points: stars.

3.1. Multi-valuedness

With the particular choice (13), multi-valuedness may occur either because of the variation
of n (as for a lens) or even whenn is constant but the initial phaseφ0 is such that rays will
focus.

Figure 1 shows rays corresponding to{
n ≡ 1.5,

φ0(x) = −
√

1+ 16∗ (x− 0.5)2

2

(14)

This particular choice leads to converging initial direction for the rays (given byẏ(0, x0) =
Hp(0, x0, φ0

x0(x0))). Rays focus and form an envelope called a cuspidal caustic. The system
(1)–(3) is solved using a fourth order Runge–Kutta method for rays equally spaced ont = 0.
Whenα changes its sign (here from positive to negative) the rays change from plain lines to
dashed line. The caustic points are marked with stars. Inside the caustic envelope rays are
crossing. More precisely, if we could visualize the rays associated to all labelsx0 on the real
axis, each point would be passed by three rays and the associated phase is triple-valued.

On Fig. 2, we superimposed the level curves of the viscosity solution. It is computed
on a Cartesian grid using a second order ENO Godunov scheme in space and an adap-
tive third order Runge–Kutta in time [17, 24]. We use outgoing boundary conditions, so
we implicitly assume that rays are flowing outward. This is, of course, not necessarily
true but does not infer with the solution in the caustic zone. This boundary condition can be
numerically implemented either simply by forcing the upwinding of the Godunov scheme
inward in the code or setting the Dirichlet value of the solution to a large number (which
yields the same effect). In our case, it produces a “rarefaction” fan near the vertical boundary
where homogeneous Neumann boundary conditions can also be used. We come back on
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FIG. 2. As Fig. 1 with level curves of the phase added. The phase increases from bottom to top.

this phenomenon in the next section. The usual observation is that rays and “fronts” (the
color level curves) are orthogonal. This is simply because the direction of the rays is given
by φx whenHp is collinear top (see (6)). It is therefore possible to keep tract visually of
the Lagrangian to Eulerian correspondence. In the multi-valued zone, the viscosity solu-
tion picks up only one of the coexisting rays according to rule (8). It produces a curve of
singularities in the gradient ofφ called a kink (or shock) when the solution “jumps” from
left-going rays to right-going rays.

The important remark is that the kink occurs on the rays before they reach their caustic
points with the notable exception of the cusp which is a kink and a caustic point at the same
time (and plays a fundamental role in the algorithm proposed in [5]).

So, even when solving (10) coupled to (5) and evaluatingβ, the viscosity solution misses
the caustics. This can be seen in Fig. 3 where a color map ofβ is displayed. The kink can
be observed andβ takes a zero value only at the cusp and the rest of the caustic cannot be
seen as it “belongs” to later “branches” of the multi-valued solution.

3.2. Dark Zones

There can be zones with no rays at all for several reasons (we already observed this
phenomenon in the previous example). We present the simplest case here but the next
section will show that it is a general rule with caustics.

We keep the same constant index of refraction but now chose

φ0(x) = 3 ∗ |x − 0.5|√
2

(15)

which has a singularity atx = 0.5.
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FIG. 3. Eulerian geometrical spreadingβ associated to the phase in Fig. 2.

On each side of 0.5 it is possible to trace classical rays. Several of them are plotted in
Fig. 4 and of course there is no caustic in this case.

The interesting phenomenon occurs when we proceed to compute the viscosity solution.
The level lines of the phase are again superimposed on the rays in Fig. 5. Of course the
viscosity solution does not know that the classical rays do not reach the middle region (the
dark zone) and fills it according to rule (7). The solution actually behaves as a propagating
front which initially has a corner att = 0, x = 0.5. The corner generates a diffracted circular
front which fills the dark zone. The viscosity solution implicitly generates diffracted rays
(imagine a fan of rays in the dark zone). We refer to [15] for a mathematical investigation
of the link between diffraction and viscosity solutions.

It must be said that these two effects exactly correspond to shock and rarefaction waves
for scalar hyperbolic conservation laws such as Burger’s equation (just differentiate the
Hamilton–Jacobi equation in space).

3.3. Combination of the Two

Really bad things happen when these two phenomena (described in Sections 3.1 and 3.2)
combine in the presence of caustics.

We are now considering a variable index of refraction made of a constant part in which
the rays are straight lines and a vertical layer which bends the rays in the negativex
direction

n(x) = 1, for x ≤ 0.5
(16)

n(x) = 1− (x − 0.5)3, for x > 0.5
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FIG. 4. Rays forn ≡ 1.5, φ0(x) = 3 ∗ |x − 0.5|/√2.

FIG. 5. As Fig. 4 with level curves of the phase added. The phase increases from bottom to top.
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FIG. 6. Rays forn as in (16). Initial and boundary conditions as in (17)–(18). Precaustic part: solid line.
Postcaustic part: dashed line. Caustic points: stars.

The initial phase prescribes an incoming oblique plane wave

φ0(x) =
∫ x

0 n(x0) dx0√
2

, (17)

and we add a compatible boundary condition atx = 0 which also generates incoming rays
to avoid rarefaction effects on the left side:

φx(t, 0) = 1√
2
, ∀t. (18)

It generates a stationary solution when the contribution of the rays associated to the initial
Cauchy condition have disappeared. The rays are presented in Fig. 6 and we observe a
folded caustic. It is as if we only considered half of a cuspidal caustic. Dashed lines again
represent rays after they pass a caustic point (stars). Notice the dark zone on the right of the
caustic (which is by definition the envelope of the rays).

The viscosity solution in Fig. 7 exhibits a kink lying on the left of the caustic. It is produced
by the conflicting classical rays and diffracted rays (not represented) which implicitly
correspond to the viscosity solution in the dark zone and are bent back in the illuminated
zone. The post caustic rays (dashed lines) are not represented by the viscosity solution as
they produce later phases. Classical and diffracted rays actually generate a new cuspidal
caustic and classical rays are implicitly “blocked” by a kink before reaching the caustic by
the diffracted rays. This can be seen in the geometrical spreading (Fig. 8), whereβ is really
discontinuous along the kink and only takes a relevant zero value at the tip of the caustic.



142 BENAMOU AND SOLLIEC

FIG. 7. As Fig. 6 with level curves of the phase added. The phase increases from bottom to top.

FIG. 8. Eulerian geometrical spreadingβ associated to the phase in Fig. 7.
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4. EULERIAN CAUSTIC CAPTURING

Section 3.3 diagnoses the “pollution” effect which a priori prevents the viscosity solution
to capture caustics. We insist again on the idea that this is a generic pathology which may
occur for any Hamilton–Jacobi equation in any dimension. More or less successful heuristic
attempts at fixing locally the Eulerian upwind scheme are proposed in [5, 6, 19].

We present in this section a general approach valid for any dimension and illustrate it on
the test case of Section 3.3. We first present it as a modification of the Lagrangian method
(even though there is nothing really to fix in this framework except the space resolution of
the method) and then explain how to convert this idea to the Eulerian framework.

4.1. The Lagrangian Version

The idea of the fix is easier to present with rays. As explained in Section 3, the Eulerian
viscosity solution follows classical rays as long they exist and yield minimum phase. Trouble
starts as soon as the tip of a caustic is reached. Rays then leave an empty zone and the
viscosity solution sees the effect of new polluting diffracted rays.

The idea of the method is to modify (1)–(3) such that rays will reach the caustic but only
asymptotically in time. A change of variable in time depending onα is used to that effect.
More precisely, we define a new times̃ along each rayy(s, x0) given by

s̃(s, x0) =
∫ s

0

1

α(σ, x0)
dσ. (19)

For convenience, we reset our equations in a general framework. Let

U (s, x0) = (y(s, x0), p(s, x0), ϕ(s, x0),
∂y

∂x0
(s, x0)

∂p

∂x0
(s, x0))T ; (20)

then the Lagrangian system (1)–(3) can be compactly written in a general form(F,G, and
U0 are defined using (1)–(3) and (2)) as

U̇ (s, x0) = F(s,U (s, x0)), U (0, x0) = U0 (21)

andα(s, x0) can be written as a function ofU :

α(s, x0) = G(U (s, x0)). (22)

The new rays are obtained simply be changing from times to time s̃(s, x0) (19). Let us
set

Ũ (s̃(s, x0), x0) = U (s, x0), (23)

which naturally satisfies the modified system

˙̃U (s̃, x0) = α̃(s̃, x0)F(s̃, Ũ (s̃, x0)), Ũ (0, x0) = U0,
(24)

α̃(s̃, x0) = G(Ũ (s̃, x0).

Of course, the dot here stands for the new time differentiation˙(.) = d(.)
ds̃ . It is easy to check

thatα̃(s̃(s, x0), x0) = α(s, x0) and therefore the system (24) will either be stationary when
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it reaches the caustic or only reach it asymptotically in time. Either options depend on the
convergence or divergence of the integral (19) as the ray approaches the caustic.

In our case,α(s, x0) is a decreasing function of timesand is zero, say at times∗, when the
ray passes a caustic pointy(s∗, x0). Whenα̇(s∗, x0) is bounded, the integral (19) diverges
for s= s∗ and

lim
s→s∗

s̃(s, x0) = +∞; (25)

otherwise there exists añs∗ such that

lim
s→s∗

s̃(s, x0) = s̃∗. (26)

In either cases the solutions of the new system satisfy

lim
s̃→+∞ Ũ (s̃, x0) = U (s∗, x0). (27)

Moreovers̃(s, x0) is invertible with respect tos and we noteS(s̃, x0) its inverse which
satisfies the additional ODE

Ṡ(s̃, x0) = α̃(s̃, x0), S(0, x0) = 0. (28)

The meaning of (27) is that we have defined modified rays which fill the time–space
configuration but correspond to old rays until they reach the caustic. The rays in the old
time variable (20) can be recovered using (28) as ((23) again)

U (S(s̃, x0), x0) = Ũ (s̃, x0). (29)

4.2. From Lagrangian to Eulerian

The pathologies of Section 3 being fixed (at least in the Lagrangian framework) we derive
an Eulerian method from the modified Lagrangian system (24)–(28).

The new-time Eulerian vector-valued function, denoted asV(t̃, x), is defined by

V(s̃, ỹ(s̃, x0)) = Ũ (s̃, x0). (30)

The first step is to differentiate (30) with respect tos̃. The chain rule gives for allj (Vj , Fj ,
andU0

j are thej th components ofV, F , andU0
j )

∂Vj

∂ s̃
(s̃, ỹ(s̃, x0))+ ˙̃y(s̃, x0) · Vj,x(s̃, ỹ(s̃, x0)) = . . .

α̃(s̃, x0)Fj (s̃,V(s̃, ỹ(s̃, x0))), (31)

Vj (0, x0) = U0
j (x

0), ∀x0,

where we can eliminatẽ̇y(s̃, x0) andα̃(s̃, x0) (using (24))

∂Vj

∂ s̃
(s̃, ỹ(s̃, x0))+ G(V(s̃, ỹ(s̃, x0)))Hp(s̃, ỹ(s̃, x0), p̃(s̃, x0)) · Vj,x(s̃, ỹ(s̃, x0)) = . . .

G(V(s̃, ỹ(s̃, x0)))Fj (s̃,V(s̃, ỹ(s̃, x0))), (32)

Vj (0, x0) = U0
j (x

0), ∀x0,
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Under the new-time parameterization, the field of raysỹ(s̃, x0) advantageously avoids
caustics and remains single valued and defined everywhere. In particular, ˜α(s̃, x0)may tend
to 0 if the corresponding ray heads towards a caustic but will never actually take a zero
value.

The definition (30) is therefore proper; the functionV(t̃, x) is single-valued and cor-
rectly defined. We can write the system (32) in Eulerian coordinates(t̃, x) (instead of the
Lagrangian(s̃, ỹ(s̃, x0))); for all j

∂Vj

∂ t̃
(t̃, x)+ G(V(t̃, x))Hp(t̃, x,V2(t̃, x)) · Vj,x(t̃, x) = . . .

G(V(t̃, x))Fj (t̃,V(t̃, x)), (33)

Vj (0, x) = U0
j (x), ∀x.

wherep̃(s̃, x0)was eliminated using the identityV2(s̃, ỹ(s, x0))= p̃(s̃, x0) (from (20) (29)
(30)).

Because of our new non-local time parameterization of the problem (19), (45) (next
section) does not simplify and we have to solve the full Eulerian system (33). An Eulerian
variableT(t̃, x) for the old time can be defined likewise,

T(s̃, ỹ(s̃, x0)) = S(s̃, x0), (34)

and satisfies the Eulerian transport equation

∂T

∂ t̃
(t̃, x)+ G(V(t̃, x))Hp(t̃, x,V2(t̃, x)) · Tx(t̃, x) = G(V(t̃, x)),

(35)
T(0, x) = 0, ∀x.

It is used to recover the Eulerian solution in the old time setting, calledW(t, x) (set
W(s, y(s, x0)) = U (s, x0)), using the identity

W(T(t̃, x), x) = V(t̃, x). (36)

This Eulerian system of coupled non-linear transport equations (33)–(35) is used to
capture caustics. Before the numerical discussion and the presentation of our simulation
results, we explore in the next section the connection between these new-time Eulerian and
Lagrangian variables (which simplify in the classical case to give the relations (6)).

4.3. More on Eulerian/Lagrangian Correspondence

We focus on the phaseφ(t̃, x)

φ(s̃, ỹ(s̃, x0)) = V3(s̃, ỹ(s, x0)) = ϕ̃(s̃, x0). (37)

The third equation of (32) is

∂φ

∂ s̃
(s̃, ỹ(s̃, x0))+ α̃(s̃, x0)Hp(s̃, ỹ(s̃, x0), p̃(s̃, x0)) · φx(s̃, ỹ(s̃, x0)) = . . .

α̃(s̃, x0)( p̃(s̃, x0) · Hp(s̃, ỹ(s̃, x0), p̃(s̃, x0))− H(s̃, ỹ(s̃, x0), p̃(s̃, x0))) (38)

φ(0, x0) = φ0(x0), ∀x0,
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The next “classical” step is usually to identify thep component of the bicharacteristics with
φx. This is done by differentiating (38) with respect tox0

i (now thei th component ofx0).
Without expanding the time derivation on the left hand side, we get

∂

∂ s̃

{
∂ ỹ

∂x0
i

(s̃, x0) · φx(s̃, ỹ(s̃, x0))

}
= . . .

∂α̃

∂x0
i

( p̃(s̃, x0) · Hp(s̃, ỹ(s̃, x0), p̃(s̃, x0))− H(s̃, ỹ(s̃, x0), p̃(s̃, x0))) (39)

+ α̃(s̃, x0)
∂

∂x0
i

{ p̃(s̃, x0) · Hp(s̃, ỹ(s̃, x0), p̃(s̃, x0))− H(s̃, ỹ(s̃, x0), p̃(s̃, x0))}.

It is possible to simplify the right hand side (the calculations are easier to perform in terms
of ( ˙̃y, ˙̃p)) and we obtain

∂

∂ s̃

{
∂ ỹ

∂x0
i

(s̃, x0) · φx(s̃, ỹ(s̃, x0))

}
= . . .

(40)
∂

∂ s̃

{
∂ ỹ

∂x0
i

(s̃, x0) · p̃(s̃, x0)

}
− ∂α̃

∂x0
i

(s̃, x0)H(s̃, ỹ(s̃, x0), p̃(s̃, x0)))

It can be checked that

∂

∂ s̃
{H(s̃, ỹ(s̃, x0), p̃(s̃, x0))} = 0, (41)

and after subtracting∫ s̃

0

∂α̃

∂x0
i

(τ, x0) dτ
∂

∂ s̃
{H(s̃, ỹ(s̃, x0), p̃(s̃, x0))} (42)

to (40) we obtain

∂

∂ s̃

{
∂ ỹ

∂x0
i

(s̃, x0) · φx(s̃, ỹ(s̃, x0))

}
= . . .

(43)
∂

∂ s̃

{
∂ ỹ

∂x0
i

(s̃, x0) · p̃(s̃, x0)−
∫ s̃

0

∂α̃

∂x0
i

(τ, x0) dτH(s̃, ỹ(s̃, x0), p̃(s̃, x0))

}
.

We verify that the initial values (s̃= 0) for the quantities inside braces match (the ini-
tialization of ϕ and p is precisely designed for) and then, along a ray and for alli , the
equation

∂ ỹ

∂x0
i

(s̃, x0) · φx(s̃, ỹ(s̃, x0)) = . . .
(44)

∂ ỹ

∂x0
i

(s̃, x0) · p̃(s̃, x0)−
∫ s̃

0

∂α̃

∂x0
i

(τ, x0) dτH(s̃, ỹ(s̃, x0), p̃(s̃, x0))

is satisfied. The no caustic condition ˜α 6= 0 ensures that the family of vectors(∂ ỹ/∂x0
i )i=1..d

is a basis ofRd. Therefore the identification formula

p̃(s̃, x0) = φx(s̃, ỹ(s̃, x0))+ H(s̃, ỹ(s̃, x0), p̃(s̃, x0))
∑

i

{∫ s̃

0

∂α̃

∂x0
i

(τ, x0) dτηi

}
(45)
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holds, withηi a vector depending on the coordinates of the usual orthonormal basis vectors
in (∂ ỹ/∂x0

i )i=1..d.
The classical results of Section 2.2 and the relations (6) are now easily established. We

simply notice that the initial Lagrangian method (21) is recovered by setting ˜α ≡ 1 in (24)
(and then ∂α̃

∂x0
i
≡ 0). We also find back the no caustic conditionα 6= 0 when passing from

(44) to (45). In this case the phase equation (38) decouples from the rest of system (32) and
we recover the system of Hamilton–Jacobi/transport equations (5)–(10) inφ andδ.

4.4. 1-D Numerical Results

We perform our 1-D test on the same example as in Section 3.3. We first solve the ODE
system (24). The new-time rays̃y(s̃, x0) are displayed in Fig. 9. They rapidly reach the
caustic and are time asymptotically stationary.

On the same figure are drawn the color level curves of the new-time phaseφ(t̃, x). As in
Section 3, we solved the system (33)–(35) on a Cartesian grid using a second order ENO
scheme in space and an adaptive third order Runge–Kutta in time.

We now deal with a set of transport equations with advecting fieldG(V(t̃, x))Hp(t̃, x,
V2(t̃, x)); so we just test for the sign of this quantity to decide whether to upwind in the
positive or negativex direction. The phase behaves as the ray field and becomes constant
in time at the caustic. As predicted by (45), when ˜α is constant (forx ≤ 0.5) the fronts and
the rays are normal. When ˜α decreases and the second component on the left hand side of
(45) is non zero, it is not true anymore.

FIG. 9. The new time parameterized solution. Rays and level curves of the phase.
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FIG. 10. Level curves of the old time variable (solution of (35)).

As explained in Sections 4.2 and 4.3 we can recover the old time solution living before
the caustic using (29) and (36). The old time is the solution of Eq. (35) (see Fig. 10) and
also becomes constant in time (stationary) at the caustic. So, when we map back in thes
andt variables the solutions in Fig. 9 (see Fig. 11), the time transformation crushes down
the solution above the caustic and accurately determines both the caustic location, the dark
zone and the phase associated to solid rays. One must also compareβ, the Eulerian marker
for the caustic (see Fig. 12 and compare it to Fig. 8).

We want to emphasize that this method provides an easy and convenient way of adaptively
refining the meshing near caustics. We use a regular Cartesian grid in space and time(t̃, x).
The grid points are denoted (t̃ j , xi ). Figure 13 zooms on these grid points mapped back in
the old-time configuration. That is, we plot a dot at points (T(t̃ j , xi ), xi ). They concentrate
near the caustic and it explains in particular why the solution of Fig. 12 is much smoother
and precise than in Fig. 8 where the time step is fixed. Remark that it is possible to useα for
refining locally the space grid in order to maintain a constant CFL with respect to the old
time configuration. The space grid mesh would then asymptotically go to 0 as we approach
the caustic. Then the spatial resolution of the caustic could be arbitrarily accurate.

4.5. Remark on the Choice ofs̃(s)

As can be observed on the 1-D numerical results and even though the integral (19) di-
verges in this case, we were able to recover the stationary solution rapidly (in terms ofs̃).
This is becauseα behaves in this case asO(s−s∗) (see Section 4.1). This means thats̃(s) is
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FIG. 11. The solutions of Fig. 9 in the old time variable computed using (35). The stars indicate the caustic
points of Fig. 6.

FIG. 12. Eulerian geometrical spreadingβ associated to the phase in Fig. 9.
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FIG. 13. Grid points in the old time configuration.

like a Log ofs near the caustic or equivalently thatS(s̃) will reachs∗ (the caustic-reaching
time) exponentially fast even though it is slowed by our change of variable.

The 2- to 3-dimensional numerical tests we carried out exhibit the same behavior. It must
be said that this could be checked (possibly after lengthy computations) for the different
types of caustics on the generic classification of these objects (fold and cusp in 2-D, more
in 3-D).

We finally stress that (19) is the simplest possible definition fors̃(s) but any power ofα
or even some non-linear monotone function of it can be used.

5. 2- TO 3-DIMENSIONAL RESULTS

Our Hamiltonian function is now defined for(y, p) ∈ Rd
y × Rd

p (d = 2, 3) by

H(y, p) =
√
‖p‖2+ N(y)− 1. (46)

This Hamiltonian arises from the high frequency asymptotic of the Maxwell equation. It
is used to model laser beam propagation in a plasma of electronic densityN [13, 20]. We
have used an Osher/Godunov scheme for the computation of the viscosity solution and a
Van Leer slope limiter scheme for our new-time system of transport equations (33)–(35).
The time discretization is explicit and first order.

5.1. 2-D

The spatial domain is limited toy = (x1, x2) ∈ [0, 1]× [0, 1]. The space discretization
is uniform throughout this section and we used a(50× 50)-point grid. The densityN(y) is
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given by

N(x1, x2) = 0, for x1+ x2 ≤ 1.1
(47)

N(x1, x2) = 2 ∗ (x1+ x2− 1.1)2, else.

We enforce an in-going plane wave boundary condition on thex1 = 0 andx2 = 0 boundaries
of our time–space cube,

(φx1, φx2)(t, x1 = 0, x2) = (cosθ, sinθ), ∀t, ∀x2,
(48)

(φx1, φx2)(t, x1, x2 = 0) = (cosθ, sinθ), ∀t, ∀x1,

and out-going boundary conditions elsewhere. We also specify a compatible initial condition

φ0(x1, x2) = cosθ ∗ x1+ sinθ ∗ x2. (49)

As in the 1-D case, both the initial conditions and the boundary conditions correspond to
rays flowing in the domain. As can be observed on the rays (Fig. 14) the outgoing boundary
condition onx2 = 1 is clearly not adapted to our ray solutions, as rays first flow out and then
flow in through this boundary. This induces a new pollution effect on the caustic, which can
again be related to “diffracted rays” discussed earlier. To avoid this problem we have used
the classical technique of enlarging the domain to confine these errors to an outer layer.
This layer has been removed in all the figures we present.

After some time (approximately 1 s) the only remaining contribution to the Lagrangian
solution comes from the boundary. The boundary condition being stationary, we obtain a
stationary solution and stationary caustic curve. Its location can be determined analytically
and forθ = π/24 (our example) corresponds to the curvex1 + x2 = 1.66 (for a density
depending only on one coordinate sayX along a directionEV and in any dimension, the
caustic hypersurface is analytically given by the equationN(X) = cos2(2) where2 is the
angle of the incoming plane wave of rays with the vectorEV (see [20]); we also use this
formula in the 3-D section).

The projection onto space of the rays corresponding to the stationary regime is plotted
in Fig. 14. In 1-D, it trivially corresponds to one time slice and the projection gives a single
plain line fromx= 0 to the caustic point and the same reverse dotted line which returns
from the caustic. The crosses again indicate that we have reached a caustic point.

We will focus in this section on the stationary solution and show how our method recovers
the caustic curve. The results are in some sense similar to what we obtained in Sect. 4.4.
In both cases we recover a caustic curve for a two-dimensional Hamiltonian: time plus one
space dimension in one case and two space dimension but a stationary solution in the other.

The pollution effect described previously on the Eulerian solution of the Hamilton–Jacobi
equation can be observed in Figs. 15–18. They show to the contour lines of the phase at
successive times and the associated geometrical spreading. The kink effect is present and
(as in the 1-D Fig. 7) is not stationary. With this technique there is no hope of recovering
the stationary solution and its caustic (indicated by a dark line).

We now proceed exactly as in 1-D, solve our time-modified system (33)–(35) over 6 s,
and map back the solution in the old-time variable using (36). The stationary solution
(see Fig. 6) is crushed down in time and for instance att = 3 s (our old-time slice) the dark
side is empty as it should be. The phase is displayed in Fig. 19 andβ the geometrical
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FIG. 14. Projection of the rays on the(x, y) plane at the stationary regime in 2-D. The stars indicate the
caustic points.

spreading in Fig. 20. The location of the theoretical caustic is indicated by a black or white
line. As in 1-D the pollution effect on the dark side of the caustic has been suppressed as
the new-time solution cannot cross the caustic.

The contour line of the phase does not reach the caustic because of our graphical software
(we use a rather coarse space discretization). Figure 21 is a zoom of Fig. 20 near the
caustic. The exact caustic line obviously separates grid points on each side of the caustic

FIG. 15. Level lines of the phase (left) and associated geometrical spreadingβ (right) at time 0.4 s. The dark
line is the theoretical caustic.
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FIG. 16. Level lines of the phase (left) and associated geometrical spreadingβ (right) at time 1.2 s. The dark
line is the theoretical caustic.

FIG. 17. Level lines of the phase (left) and associated geometrical spreadingβ (right) at time 2 s. The dark
line is the theoretical caustic.

FIG. 18. Level lines of the phase (left) and associated geometrical spreadingβ (right) at time 2.8 s. The dark
line is the theoretical caustic.
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FIG. 19. Level curves of the phase mapped back in the old time variable. The dark line is the theoretical
caustic.

FIG. 20. Eulerian geometrical spreadingβ associated to the phase in Fig. 19. The white line is the theoretical
caustic.
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FIG. 21. Zoom of Fig. (20) near the caustic.

FIG. 22. Error in the caustic location determination versush the mesh size.
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FIG. 23. Case 1: The isosurfaces of the phase and the theoretical caustic surface as a black meshgrid.

(dark and illuminated zones) which seems to indicate that our method is only limited by the
space discretization. We therefore expect the error in the determination of the caustic location
to depend on the size of the mesh, sayh, and to be of orderO(h). We decide to consider as
the “numerical caustic” the envelope of the grid points which are placed in the illuminated
zone. In our 2-D experiment it consists in a diagonal line of boundary grid points which is
parallel to the exact caustic. We define the error as the orthogonal distance between exact and
numerical caustic. Figure 22 shows this error versush in Log–Log scale. The numerical error
behaves ash0.8. This confirms that our method is exact up to the space discretization. At the
points on the numerical caustic,β is of order 10−1 because its profile is very stiff. This also

FIG. 24. Same as Fig. 23 with different viewpoint.
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FIG. 25. Case 1: Eulerian geometrical spreadingβ and the theoretical caustic surface as a black meshgrid.

indicates that our method actually places the caustic somewhere further in the neighboring
mesh and that the above error is a rather bad estimate of the precision of our method.

5.2. 3-D

The Hamiltonian is unchanged (given by (46)). We are now in a 3-D domainy=
(x1, x2, x3) ∈ [0, 1]× [0, 1]× [0, 1] and the densityN is a 3-D generalization of (47),

N(x1, x2, x3) = 0, for a ∗ x1+ b ∗ x2+ c ∗ x3 ≤ 2.1,
(50)

N(x1, x2, x3) = 2 ∗ (a ∗ x1+ b ∗ x2+ c ∗ x3− 2.1)2, else,

so thatN is really only a function ofa ∗ x1 + b ∗ x2 + c ∗ x3, i.e., varies in one direction
determined by the coefficients(a, b, c). The boundary and initial conditions now depend

FIG. 26. Same as Fig. 25 with different viewpoint.
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FIG. 27. Case 2: The isosurfaces of the phase and the theoretical caustic surface as a black meshgrid.

on two anglesθ1 andθ2,

(φx1, φx2, φx3)(t, x1 = 0, x2, x3) = (cosθ1 ∗ cosθ2, sinθ1 ∗ cosθ2, sinθ2) ∀t,
(φx1, φx2, φx3)(t, x1, x2 = 0, x3) = (cosθ1 ∗ cosθ2, sinθ1 ∗ cosθ2, sinθ2) ∀t, (51)

(φx1, φx2, φx3)(t, x1, x2, x3 = 0) = (cosθ1 ∗ cosθ2, sinθ1 ∗ cosθ2, sinθ2) ∀t,

FIG. 28. Same as Fig. 27 with different view point.
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FIG. 29. Case 2: Eulerian geometrical spreadingβ and the theoretical caustic surface as a black meshgrid.

and outgoing boundary conditions elsewhere. We again specify a compatible initial condi-
tion

φ0(x1, x2, x3) = cosθ1 ∗ cosθ2 ∗ x1+ sinθ1 ∗ cosθ2 ∗ x2+ sinθ2 ∗ x3. (52)

As in 1-D and 2-D, the rays are “reflected” from a caustic surface. Its equation can be

FIG. 30. Same as Fig. 29 with different viewpoint.
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FIG. 31. Case 3: The isosurfaces of the phase and the theoretical caustic surface as a black meshgrid.

computed analytically and is given by (see 2-D section)

a ∗ x1+ b ∗ x2+ c ∗ x3 = . . .

2.1+ 1√
2
∗ a ∗ cosθ1 ∗ cosθ2+ b ∗ sinθ1 ∗ cosθ2+ c ∗ sinθ2√

a2+ b2+ c2
.

(53)

We show the results for three different sets of parameters. Case 1(a= 1, b= 1, c= 1);
Case 2(a= 1.41, b= 1.41, c= 0.71); Case 3(a= 1.6, b= 0.1, c= 1.6). For all tests

FIG. 32. Same as Fig. 31 with different viewpoint.
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FIG. 33. Case 3: Eulerian geometrical spreadingβ and the theoretical caustic surface as a black meshgrid.

θ1= θ2=π/48. The simulation new-time iñs is 9 s and we present the stationary solu-
tion at the old-times= 4 s. We use a 50× 50× 50 grid in space but only represent one
portion of the domain(]0.5, 1[×]0.5, 1[×]0.5, 1[) where the caustic appears.

Figures 23, 24, 27, 28, 31, and 32 show different viewpoints of the isosurfaces of the
phase function. The colormap has no meaning here and has been chosen for visibility of the
surfaces. As in Fig. 19 the graphic processing has erased part of the data. The representation
of the geometrical spreadingβ (Figs. 25, 26, 29, 30, 33, and 34) show that we recover the
correct location for the caustic. Again,β is very stiff near the caustic and of order 0.1 in our
grid approximation. The effect of the inconsistent outgoing boundary condition can also be
observed.

FIG. 34. Same as Fig. 33 with different viewpoint.
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6. CONCLUSION

Let us first say that caustics are the locus where energy concentrates and a reliable
numerical method for the determination of such objects should be useful.

The present paper is a companion paper to [5] where an algorithm for the automatic
splitting of multi-valued solutions partly based on caustic detection was proposed. Our
algorithm is able to capture pieces of each caustic (curves or surfaces) on a single branch
of the multi-valued solution. When several branches contribute to a single caustic different
and more complicated patterns occur. The way of splitting the 2-D generic cuspidal caustic
(A3 in the [2] terminology) is explained in [5] (the fold (A2) being a simple sub-case of
the cusp). The robustness and accuracy of our caustic capturing method makes it possible
to work on the implementation of higher dimensional versions of the multi-valued splitting
algorithm. In 3-D, however, one should carefully study the possibility of carrying a similar
splitting on the other specifically 3-D generic caustic (A4 and D4, still [2]).

Caustics are also important theoretical objects and, for instance, our method could be
used to study numerically unstable caustics (focal points).

The “dark zone” pathology raises an interesting question about viscosity solutions and
high-frequency asymptotics of wave propagation equations. The behavior of the viscosity
solution in the areas not covered by classical rays indeed corresponds, at least in simple
cases, to diffraction phenomena (see [15]).

Further possible improvements of our method include the implementation of adaptative
gridding in space as suggested in Section 4.4, the use of robust high-order schemes such
as WENO schemes (see [23]) and the reduction of the number of equations in our system
using simpler methods for computing the geometrical spreading [7, 23].

Finally, the general presentation of the method in Section 4.1 (Eqs. (21), (24)) suggests
that a similar change of variable may be useful in other free boundary problems.
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